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General rules are here developed for choosing step sizes consistent with preset accuracy 
for the solution of the one-dimensional SchrSdinger equation. These rules are then par- 
ticularized for the case of perturbative methods lying upon piecewise constant reference 
potential and verified experimentally for two cases. To help the reader, the algorithms of 
the basic versions of these methods are summarized in the Appendix. 

1. INTRODUCTION 

The problem of choosing step sizes for perturbative methods in solving the radial 
Schrodinger equation has been investigated in several papers, e.g., [I, 21. However, the 
basic arguments of these procedures are rather empirical and do not lead always to 
fully reliable rules; see also [3]. Therefore a more systematic treatment appears to be 
necessary and this is done in the present paper. 

2. CONSTRUCTION OF ERROR BOUNDS 

Our problem is to find a partition of [a, b] so that the local truncation error of the 
numerical solution for the Schrgdinger equation 

J“’ f (E - V(x)) y = 0, x E [a, bl, .!J@> = J’s 3 y’(a) =: y; ) (2.1) 

to be maintained under some preset level E for any energy E within the range of 
interest [Emin , Em,]. The rules which will be obtained can also be applied to find 
partitions consistent with some preset level for the accumulated error, as seen at the 
end of this section. 

We restrict ourselves here only to perturbative methods. It is well known that they 
yield, at coarse partitions, results which are fully satisfactory in describing numerous 
physical phenomena. This is equivalent to saying that, for many physical problems, 
these methods do not need small steps. In this case an accurate estimation of the local 
truncation error requires several terms in its expansion to be taken, in contradis- 
tinction to the case of small step sizes, when the leading term only is usually sufficient. 
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A second area of concern is the energy dependence of the error. Indeed, if we write 
Eq. (2.1) in some current interval [xi , X~+~ = xi + h], S = x - xi, 0 ,< S < h, as 

y"+(E- V-dV)y = 0, OV=V-F, C-4 

where V is the reference potential of the employed perturbative method, one sees that 
the accuracy of the results actually depends on the size of the relative perturbation 

o(E)= Iovl/l~r-E[. (2.3) 

Consequently, the largest error should arise when the current value of the energy E 
approaches the potential curve, i.e., 

EriE,- s h dS V(x< + S),‘lz 
0 

(2.4) 

This is the basic assumption of the so-called artificial turning point procedure 
examined in [4]. 

This argument is, however, not sufficient. In fact, it guarantees that the largest error 
arises at E N Et but this is true only for some averaged quantities such as the function 

P(E) = (I dS WE, S,)/(’ dS y2(xi + S), (2.5) 

where D(E, 6) is the deviation of the numerical solution from the exact one, 

D(E, S) = y(xi + S) - ycomput(xi + 6). 

It might not be true for individual quantities such as the relative error at certain 
s = s,, 

J-W = I W, U/l v(xi + &)I. (2.6) 

The following two-stage strategy then emerges to find formulas for the local error 
associated with a perturbative method: 

(i) use the turning point energy Et and take several terms to describe the 
actual error at S = h; 

(ii) examine the energy dependence of the error at S = h. 

These individual pieces of information are finally merged into a single descriptor 
which is then used to evaluate the appropriate step size. 

In the following we apply this strategy to the three versions, CPM@), k = 0, 1,2, 
of the perturbative methods with constant reference potential. Their algorithms are 
summarized in the Appendix. 

First, we need to construct accurate representation for the exact solution of Eq. (2.2). 
To this aim we take as many terms as necessary in the perturbation expansion for the 
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transfer matrix elements at E = Et . With the notations used in the Appendix, 
E = Et means F = 0. 

The terms given below are sufficient for this purpose. These are: 

A. Terms from the parabolic perturbation (A@. The first three of these are 
already written in the Appendix and can be specified at once for F = 0 simply by 
taking the leading terms in the series expansion for the auxiliary functions 5, 7, 5, p, 
y, T. One finds, for instance, 

etc. We also add the third-order corrections. Their calculation is rather simple and 
the results read: 

(2.7a) 

(2.7b) 

he 
u3’ = F 

( 
64 

8V~zV2 + 16V~V22/~ + 1289 Vz3h2 
1 
, (2.7~) 

v3’ = - ; ( VI3 + $ VI2 V,h + $ VI V22h2 + ; V21h3). (2.7d) 

B. Terms from the residual perturbation (A5). Here we only retain the first-order 
corrections. One finds that, for F = 0, all of them are zero. 

C. Mixed terms from the perturbations (A5) and (A6). From these we retain 
only the lowest-order terms resulting from the first member in the r.h.s. of Eq. (A5) 
and the whole perturbation (A6). They read: 

The expressions 

Ti, = tf’ + tfj + ti”j + tf.. + t: 9 i,.j = 1, 2, (2.9) 

(2.8a) 

(2.8b) 

(2.8~) 

(2.8d) 
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contain sufficient terms so that Tij can be thought of as a fairly accurate representation 
of the elements of the exact transfer matrix, Eq. (A7). To compress the writing, the 
following notations have been used: t,, = U, t12 = U, t,, = zc’, t,, = v’. 

When a CPM(k), k = 0, 1, 2, is applied it produces results whose relative local 
error reads: 

The case i = 2, j = 1 plays a special role because t$ = t& = 0. As such, for this case, 
the only appropriate error will be the absolute one, 

(2. I Ob) 

We now come to the second stage. Clearly, only the terms which vanish at F = 0 
might be suspected of exhibiting the disturbing factor F in their expressions. These 
are tz”, , t2’, , the coefficients of VI3 in t,“z and tz”, , and the terms under B. The first two 
are 

t& = Fq, til = -$V,Fp, 

the next two are exactly zero for F # 0, while the terms under B read 

t11 
B =_ ’ (w” + ; -tr4) Fq, 80 t,“, = - +2 Y4F7, t;=-F$, t&z-tlB,. 

(2.11) 

The ratios / t{ l/l tii I ~11 I t: l/i tjJ. / = bii provide us with the energy dependent 
components of the error (EDCE): 

The estimates given in the RHS of Eqs. (2.12a), (2.12b) are obtained from the series 
expansions of the functions E, 7, 93, and r in which only the leading term has been 
retained. Thus, they are valid only in the limit of small I 2 ) = I F I h2. In the case 
when 1 F ) is very large asymptotic expansions for q and T should be used. As these are 

dF, 4 = --h”&K h)/(3F2), T(F, h) ‘v h4~(F, h)/(30F2), 
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the result is that 
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h3 h -- &11 =B22 =240(F, ‘y,+g-i , 

h4 
~12=~21=3360,F,l~l. 

(2.12c) 

The formulas (2.12a)-(2.12d) show that the EDCEs are bounded functions of 1 F j. 
They actually indicate that for small 1 F 1 each Cij increases linearly with 1 F 1, reaches 
some maximum, and finally, for large 1 F 1, damps out as ] F 1-l. This allows one to 
understand several experimental features reported in the literature. For instance, 
in papers [5-91 it was noted that the results given by the CPM(O) and CPM(l) are 
practically independent of energy. We can now explain this as coming from the fact 
that both the energy range [Emin , I&,,] and the step sizes used in these investigations 
correspond to small 1 Z 1. Consequently, the EDCEs are given by Eqs. (2.12a), (2.12b). 
Thus, they decrease with h as hP, p > 7, i.e., much faster than the leading term of the 
local error for these methods. In fact, the latter decreases as h3 for the CPM(O) and as 
h5 for the CPM(l). In contrast, for the CPM(2), as seen in the results reported in 
[4, lo], the EDCEs might play some role. One can now say even more, namely, that 
they are significant only in the intervals where v3 and Y4 are large. 

Another experimental feature which we can now understand quantitatively is that 
the perturbative methods are by far more appropriate in solving the Schrijdinger 
equation at higher energies. This comes from the fact that, as explained, the EDCEs 
are bounded functions for the perturbative methods while they are strict increasing 
functions of 1 F I for classical methods. In the case of the Numerov method, for 
instance, the local error is proportional to [ F I3 h6/240 (see formula (3.2) in Ref. [l l]), 
i.e., it is cubic in J F I. 

As shown, there are six individual relevant errors, eI1, cl2 , es1 , cz2 , b,, , and d,, . 
An appropriate unique descriptor of these is their maximum value, 

h(h) = SUP{+ , ~12, ~21, ~22 , ~,,,~,,I. (2.13) 

Thus, to find the step size consistent with a preset level E for the local error, one has to 
solve the equation h(h) = E. Once the root h is found the procedure is repeated in the 
next interval, i.e., that which originates in xi+1 = xi + h, and so on. 

If n is the total number of steps of the resultant partition it is reasonable to assume 
that the product ~~ gives a realistic bound for the accumulated error. However, in so 
doing, the accumulated error plays the role of an output quantity rather than of an 
input parameter, as required in most applications. 

To solve the inverse problem, i.e., how to get E when the upper bound for the 
accumulated error, TOLV, is imposed, we use a preliminary computation. To be 
specific, once the method and the integration limits are chosen, we carry out a 
preliminary computation which generates the partition consistent with some input E,, 
for the local error. (We have always taken Ed = 1.) Let n, be the resultant number of 
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intervals. As the local error for CPM(k) reads (C& 2k+3 hikf3, then, with the assumption 
that it just equals E,, , 

E o = (Ck)fk+, hfkf3, (2.14) 

one can determine an average ck, 

(2.15) 

c7, is practically independent of E. Therefore, once i;k is found from the preliminary 
computation, it is used in the current calculation (i.e., with TOLV as input parameter). 
The link between TOLV and E is 

TOLV = (b - a) &Wc+l)/W+3)~ (2.16) 

3. NUMERICAL RESULTS 

We take the two examples which were also investigated in [9]: 

(a) Saxon-Woods potential 

y ‘(x) = u,/(l + t) + u,t/(l + t>2, t = exp[(x - x,>/a,l, (3.1) 

with u. =-- -50, .x0 = 7, a, = 0.6, u1 = -uo/ao . The integration domain is [a = 0, 
b = I 51 and the energy domain is [Emi, = -50, Emax = 01; 

(b) Morse potential 

v-(x) = Dt(t - 2), t = expbo(xo - 41, (3.2) 

with D = 188.3455, a, = 0.711248, x0 = 1.9975. The two domains are [a = 0, b = 201 
and [Z&in = - 180, Emax = 01. 

The factors c‘I; are determined in a preliminary computation. They are co = 0.75, 
(?I = 0.8, (?? = 0.45 for potential (a) and c0 = 2.5, (?r = 3.7, and cz = 1.4 for 
potential (b). 

In a first set of tests we compare, for several test energies within the energy domain, 
the relative deviations at x = b of the computed solutions from the exact ones, at 
various values of the input TOLV, for the same initial conditions ya = 0, yi = 1. 
The test energies were Ei = Emin + 5i, where i = 0, 1, 2,..., 20 for (a) and i = 
0, 1,2,..., 36 for (b). The solutions computed with the CPM(2) at TOLV = 1O-6 
(potential (a)) and TOLV = 1O-4 (potential (b)) are taken as reference. 

In Table I, results are given in upper entries for the quantities 

4 = SUP (1 ~~~~~~~~~~ ; b) - JJ’“‘(Ei ; b)l/l yre’(Ei ; b)l, 

1 ycomp”t’(& ; b) - y’@‘(E, ; b)l/l y’ef’(E, ; b)l}/TOLV, (3.3) 
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TABLE I 

Values of Accumulated Error/Preset Accumulated Error, Eq. (3.3), for the Two Potentials 

Preset TOLV 

1 10-l IO-” 10-s IO--% 10-j 

Saxon-Woods 

CPM(O) 

CPM(l) 

CPM(2) 

Morse 

CPM(O) 

CPM(l) 

CPM(2) 

0.05 0.06 
(21)” (64) 
0.03 0.05 
(14) (24) 
0.05 0.09 
(8) (11) 

0.25 
(105) 
0.10 
(57) 
0.08 
(21) 

0.25 
(333) 
0.11 
(101) 
0.11 
(28) 

0.05 
(203 
0.08 0.13 0.14 
(39) (67) (I 15) 
0.11 0.09 0.06 0.03 
(15) (22) (32) (46) 

0.12 
(178) 
0.07 0.07 
(39) (55) 

0 The number of steps of the corresponding partitions is indicated in parentheses. 

i.e., the ratio between the maximum value of the experimental accumulated error and 
the preset level TOLV; the lower entries indicate the total number of steps of the 
resultant partition. The computations were stopped when the partition became so 
narrow that it would be no longer relevant for our purpose. 

One sees that, while unity would be the ideal value for each A, the experimental 
values are smaller by an order of magnitude. This can easily be understood because 
the local error reaches its maximum at different energies in different intervals. Thus, 
when the equation is solved over the entire integration domain for one and the same 
energy, there are only a few intervals in which the local error approaches its upper 
bound while it is much smaller in all the others; in turn, this leads to smaller values 
for the accumulated error. With this point in mind one can conclude that our proce- 
dure is safe. 

The same partitions can also be used to solve the eigenvalue problem. In this case 
the appropriate descriptor for the accumulated error in the wavefunctions is the upper 
value, in the whole spectrum, of the absolute error in eigenvalues, 

d E = sup / ESef - E;omp”t 1 z i 
(3.4) 

(i now stands for the eigenvalue label). This was our second set of tests and the results 
are presented in Table TI. These data are useful in drawing some conclusions con- 
cerning the efficiency of these methods. For instance, only 22 steps are necessary for 
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TABLE II 

The Upper Values of the Absolute Errors of the Eigenvalues Computed for the Two Potentials 
by the Three CPM Versions 

Preset TOLV 

Saxon-Woods (units TOLV x 10-3 

CPM(O) 
CPM(l) 
CPM(2) 

1 10-l IO-” 10-s 10-4 IO-5 

3.4 2.4 2.0 
2.0 3.1 4.3 5.0 5.4 
3.1 3.3 6.9 8.9 4.8 4.0 

Morse (units TOLV x 10-l) 

CPM(O) 
CPM(l) 
CPMQ) 

1.4 1.4 
0.3 0.3 0.4 
0.2 0.4 0.4 0.2 

CPM(2) in the case of the Saxon-Woods potential to obtain all eigenvalues with 
absolute error of at most 8.9 x 10-5. For the same accuracy the method of Numerov 
requires h < I/32, i.e., more than 480 steps (see Table VI in Ref. [9]). 

APPENDIX 

ALGORITHMS OF THE PERTURBATIVE METHODS 
BASED ON CONSTANT REFERENCE POTENTIAL 

These algorithms were reported previously in several papers [4-IO] and with 
different notations. Here we summarize them in a consistent notation. 

To solve the one-dimensional Schriidinger equation 

Y” + (E - T(Xi + 6)) y = 0, Y(O) = Yo 9 Y’(O) = u:, 3 (Al) 
on a single interval 0 < 6 < h, 6 = x - xi , we first approximate Y by a parabola, 

f(Xi + S) = v+ v, (6 - ;, + vz (62 - $); WI 

so that we are left with the approximate equation 

9” + (E - ?qxi + S)) r” = 0, S(O) = Yo 3 Y’(O) = y; . (A31 
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The optimal values of 5, V, , and V, , i.e., the ones which generate the smallest 
deviation of the solution of Eq. (A3) from the one of the original equation, (Al), are 
given by 

v = k8 [19(Vl + V6) + 75(V2 -$- Vj) + 5O(V3 + 1/y, (A44 

V, = Ah [950V4 + 125OV - (611 V1 + 1025V2 + 175l’” -{- 389l’“)], (A4b) 

v2 = & [5(v’ + V”) + 6(V2 + V5) - 11(1’s + v)], (A4c) 

where Vm = (xi + (m - l)h/5), m = 1,2 ,..., 6. The deviation of the parabolic 
potential from the original one reads 

Ll B = 2 h3[20(6/h)3 - 30(6/h)2 + 126/h - I] 

+ 2 h4[35(6/h)4 - 60(6//~)~ + 326/h - 31 + O(h5), (A5) 

where Vm = dmV(xi + S)/d@ js-,, . The exact solutions at 6 = h of Eqs. (Al) and 
(A3) coincide within B(h’). 

To summarize, the original V is written as a sum of three terms, 

v(xi+s)= V+ov+LlP. 

The most important of them is, of course, the constant V. It is taken as the reference 
potential. The next important term is d V, 

Llv = v, (s - ;, + v, (s2 - $) 

and it is considered as the main perturbation. The last term, d P, plays the role of a 
residual perturbation. The solution of Eq. (Al) then reads 

(A7) 

where each element of the transfer matrix is written as perturbation series from 
d V + d 8. For instance, 

u(h) = uO(h) + d(h) + u2(h) + me., w9 

The algorithms described in [4-lo] consider only the parabolic perturbation d V. The 
algorithms of the constant reference potential perturbative methods (CPM) are 
labeled through the last order retained from the parabolic perturbation. Only CPM(k) 
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with k = 0, 1, and 2 have been reported so far. Their truncation errors are @(I?), 
B(h5), and 8(h7”g), respectively. The expressions of the first three individual contri- 
butions are 

uO(h) = t, 

Wa) 
u2(h) = & V12hp - k VlV2(2p - /Pp) - & V22h(57p, - 16/z2p), 

uO’(h) = Fy, d’(h) = - ; V$p, 

U2’(h) = & VI2 (7p - fh2lj + $ V,V,h (7p - fh?(j 

+ v22 [- $39 - 5h2p) +&T + $I~~,], 

(A9c) 

uO’(h) = 5, 

v2’@) = & V12h’ + &, v,v,(2q’ + h2p) + k. V22h(63g, + 16h2p). 

Here F = V - E and 5, q, 5, p, q, and T are the values at 6 = h of the following 
functions: 

[(F, 6) = (exp(F1/26) $ exp(-F1126))/2 = cos(l F jl/’ 8) for F < 0, 

= cosh(N26) 
(AlOa) 

for F > 0; 

v(F, 8) = (exp(F1126) - exp(-FW))/(2F1/2) = sin(l F Ill2 8)/l F j1/z for F < 0, 

zzz 6 for F = 0, 

= sinh(F1J26)/F112 for F > 0; 

(AlOb) 

W’, 6) = (Wf’: 8) - rl(I;; W/F; (AlOc) 

PUT 8) = (--62#‘, a)/3 + <(F, S))/r;; (AlOd) 

~(6 6) = -(5p(F, 6) + a25(F, W3)E (Aloe) 

T(F, 8) = (7rp(F, 6) - 62p(F, S))/(lOF). (AlOf) 
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Their series expansions in powers of 2 = FP read 

rl(Fp 6) = 6 *lo (*q : I)! z4, 

5E 6) = s3 go (g ; ;;, 24, 

/@, 8) = _ ; 85 f (9 + l)(q + 2, zq, 
*=o (29 + 5)! 

y(j7,iq = - ; 67 f (9 + 1;;;; $9 + 3) p, 
Q=O 

@, 6) = $69 f (9 + ')(q 2;,'y9; 3)(9 + 4) ZR. 
q=o 

(Al la) 

(Al lb) 

(Al lc) 

(Al Id) 

(Alle) 

(Al If) 

In practical computations for j 2 [ > Zthreshold definitions (AlO) should be used, 
while for 1 Z I < Zthreshold series expansions (Al 1) should be used. For IBM 360 
or 370 computers Zureahoid is taken as unity for single-precision calculations and as 
0.06 for double-precision calculations. In both cases the number of terms retained 
in the series is seven for 5; six for 7; five for 5, p, and v; and four for T. The compu- 
tational effort/step for the three versions (CPU time on an IBM 370/135) is around 
1.7, 2.3, and 4.2 msec, respectively, for single-precision calculations and 2.3, 3.1, and 
5.2 msec, respectively, for double precision calculations. Clearly, this is several times 
larger than for the method of Numerov (around 0.5 msec for single precision). 
However, as a rule, this is compensated by the number of steps required for the same 
accuracy which is significantly smaller for perturbative methods; see Tables I and II 
as well as the discussion at the end of Section 3. 

Note also some relationships between the auxiliary functions. These are useful for 
various operations with the computed solutions. 

Differentiation with respect to 6: 

Differentiation with respect to F: 
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